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General semi-infinite programming (GSIP) is a 20 years-studied branch of continuous optimization
and constitutes a very powerful modeling tool with many applications. There is a whole bunch of solu-
tion methods. However, with the exception of some these were mainly developed from a theoretical /
conceptual point of view. The aim of this paper is to present a collection of test problems from academia
as well as from diverse application areas which gives a common basis on which algorithms for the so-
lution of GSIP problems can be tested and compared.For a popular GSIP application, namely design
centering optimization it is possible to generate own problems in addition to pre-defined problems. All
problems and the ingredients for stating a design centering problem are implemented in Matlab in an
object-oriented manner.
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1. Introduction to General Semi-Infinite
Optimization

In this section we introduce the terms of semi-infinite optimization, which are necessary to understand
the subsequent sections of this manual and to work with the GSIP problem library and generator.

1.1. Basic terms

A semi-infinite optimization problem in its simplest shape, i.e. with one (semi-infinite) constraint, has
the following form:

(G)SIP : xrélﬂigrrln f(x) (1.1)
st. g(x,y) <0for all y € Y(x),

where f, g are real-valued, at least continuous functions on their respective domains and Y : R™ = R"
is a point-to-set mapping with |Y(x)| = oo for at least some x. Because of the last, Problem (1.1)
possesses an infinite number of constraints, but a finite number of decision variables, leading to the name
semi-infinite optimization problem.

If the mapping Y (x) does not depend on x, i.e. Y(x) =Y C R" for all x € R™, Problem (1.1) is called
a standard semi-infinite optimization problem and abbreviated by SIP, otherwise Problem (1.1) is called
a general(ized) semi-infinite optimization problem and abbreviated by GSIP. For a detailed introduction
to semi-infinite optimization we refer in the case of SIP problems to the survey article [3] and the book
[12] as well as for GSIP problems to the survey articles [2, 18] and the monographs [17, 30]. We focus
on general semi-infinite optimization problems in this collection.

The set Y (x), also called infinite index set, is usually given as solution set of a system of inequalities

Y(X) = {yGRn|Uj(X,y) Soa J:]-avq}

The consideration of several semi-infinite constraints in combination with possibly completely different
infinite index sets
gi(x,y) <0foraly€Yi(x), i=1,...,p

is straight forward and will be utilized in this collection.
The key for the theoretical as well as the numerical treatment of semi-finite optimization problems lies
in its bi-level structure. The parametric lower level problem is given by:

Q(x) : yngggg(x, y)

st.vj(x,y) <0, j=1,...,q.

The decision variables x of the original problem become the parameters of the lower level problem and
the index variables y its decision variables.

The function ¢(x) := maxycy(x) 9(X,y) is called optimal value function of problem Q(x). Conse-
quently, the feasible set M of GSIP can be rewritten as

M={xeX|px) <0}

This is a description of M with just finitely many, namely one constraint. But the constraint function ¢
is only given implicitly and in general not differentiable. Furthermore, one has to solve an optimization
problem to global optimality to compute a value of ¢, which is a hard task generally.



1.2. Numerical methods

To date, solution methods for general semi-infinite optimization problems have been developed primarily
from a conceptual point of view. To the best of our knowledge, comprehensive numerical evaluations
exist only for the explicit smoothing approach [19, 17] in [17, 31, 32, 14] and its feasible variant [31, 22]
in [31] as well as the transformation-based discretization method [14, 15] in the publications themselves.
All in all, the methods developed so far rely on two concepts:

(1) generalization of methods for standard semi-infinite optimization problems and
(2) transformation of a general semi-infinite optimization problem into a standard one
The methods stemming from concept (1) can be further subdivided:
(A) discretization and exchange methods (e.g. [14, 15, 25, 24]),
(B) methods based on local reduction of the general semi-infinite problem (e.g. [20, 21, 23]),

(C) methods based on the reformulation of GSIP into a related problem class, so-called lift-€-project
approaches (e.g. [1, 14, 17, 19, 22]).

Discretization: We briefly review the solution of standard semi-infinite optimization problems by means
of discretization. For a detailed introduction to discretization methods we refer to [11, 12].

Let us consider a standard semi-infinite optimization problem with one semi-infinite constraints for
sake of simplicity:

SIP: min f(x)
st.xeM:={xeR"|gx,y)<0forally €Y},

with Y being a non-empty, compact, infinite (index) set, and real-valued, at least continuous functions
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For a subset Y of Y we introduce the optimization problem
SIP(Y): min f(x) s.t. x € M(Y)

with R R
M) := {x eER™ | g(x,y)<0foralye Y} .

If Y CY is a finite set, SIP(Y) is called discretized (SIP) problem and also denoted by P(Y).

The basic idea of discretization methods is to successively calculate a solution of discretized SIP
problems P(Y;),l € Ny, by an algorithm for finite optimization problems, where {Y;};cn, is a sequence
of finite subsets of Y. The grid sequence {Yl}leNO is either defined a priori or determined adaptively. In
the latter case, informations of the [-th discretization stage are used to define the grid Yl+1-

The generalization of this idea to general semi-infinite optimization is difficult, because of the x-
dependence of the index set Y (x) and, thus, its discretizations. In order to ensure the closedness of the
feasible sets of the discretized problems, the discretization points must be constructed such that they
depend at least continuously on x. However, because of additional requirements that must be met for
convergence of such methods in the GSIP-case, they are difficult to implement. Nevertheless, in [14, 15]
an approach using a transformation is presented, avoiding these difficulties and performing well at the
test problems of this library and problems stemming from gemstone cutting.

Transformation: In principle, under suitable assumptions, each GSIP problem can be transformed at
least locally into an equivalent SIP problem (see [23, 29] for details). However, such a transformation is
only useful in practise, if it’s given globally.

The ideal situation is the following: Given a non-empty compact set Z C R” and amap ¢ : R™ x Z —
R™, such that t(x,Z) = Y (x) for all x € R™. Then, we can rewrite the general semi-infinite constraint

g9(x,y) <0 for all y € Y(x)



to a standard semi-infinite constraint
g(x,2z) :=g(x,t(x,2z)) <0 forall z € Z. (1.2)

For one-dimensional index sets Y'(x) = [I(x), u(x)] with I(-) < u(:) such a transformation can easily
be computed via convex combination of the interval limit. In higher dimensions a similar construction
can be done for star-shaped index sets (see, e.g., [23]).

An advantage of this approach is that for SIP problems more sophisticated solution methods are
available. However, a problematic disadvantage is that the transformation may destroy convexity in the
lower level which is essential for solving a semi-infinite optimization problem performantly. In [14, 15] a
method is presented which makes use of transforming the GSIP into a SIP, but avoids the destruction
of convexity in the lower level by operating on the original convex GSIP lower level problems.

For enabling this library to be used with transformation-based methods, like the above mentioned one,
we state a transformation for each problem in the collection, whenever it is possible.

Finally, with regard to the implementation of the problem library and generator, we rewrite problem
(1.1) in more detail and repeat the naming,.

In the implementation we allow and make use also of finite constraints on the upper as well as on
the lower level variables and distinguish between inequality and equality as well as between linear and
nonlinear constraints. In the lower level only inequality constraints are permitted. Furthermore, it
is possible to handle multiple semi-infinite constraints with different index sets. Semi-infinite equality
constraints are not admitted, because of technical difficulties. By that Problem (1.1) has the following
form:

GSIP: min f(x) (1.3)

x€R™
s.t. giSI(x, y) <0forall y € Yy;)(x), i€ 2
gr(x) <0, ielI",
hj(x) =0, j € JL,
AUtx < pUt
CULy ; dUL:

UL < x < uVL,
with

Yi(x) :={y e R™ | v ;(x,y) <0, j€ J;I;L,
A (x) -y <bM(x),
Lr(x) <y <wt(x)}, ke K,

where K, J,I;L, JUL, I¥, 191 are finite index sets, Vk,j> g, gy, gfI, f are real valued, at least continuous
functions, AFL(-), bEL(4), 1EL(4), ull(-) are matrix- resp. vector-valued, at least continuous functions
and AUl bVl CUL) UL 1V wUL are matrices resp. vectors of matching dimension. The mapping ¢
assigns every semi-infinite constraint function to an infinite index set. Especially for the later introduced
multiple body design-centering examples it is useful to have this information. For sake of simplicity we
drop the indices, if they are obsolete.

Although already introduced, we want to repeat and summarize some terms with regard to the imple-
mentation of the collection:

e The function f is called objective (function).

e The vector x constitute the upper level and the vector y the lower level (decision) variables.

e The functions giSI,i € IS, are called semi-infinite constraint (functions). They are constraint

functions in the upper level as well as objective functions in the lower level.



The sets Yy (x),k € K are called infinite index sets and constitute the feasible sets of the lower
level problems.

The functions gf',i € IF, are the finite resp. upper level nonlinear inequality constraint functions
(on x).

The functions h;,j € JU-
(on x).

, are the finite resp. upper level nonlinear equality constraint functions

The matrix AU and the vector bY% constitute the upper level linear inequalities (on x).

The matrix CY* and the vector dU" constitute the upper level linear equations (on x).

lUL

The vectors and uV" are the upper level lower and upper bounds (on x).

The functions vi j,k € K, j € Jy, are the lower level nonlinear inequality constraint functions (on
y, parametrized by x).

The matrix AkL and the vector b};L, k € K, constitute the lower level linear inequalities (on y,
parametrized by x).

The vectors lI,;L and uI,;L, k € K, are the lower level lower and upper bounds (on y, parametrized
by x).

The function ty, k € K, is the transformation function transforming Yj(x) to Zj and back.



2. Basics about the collection

The examples are implemented in MATLAB [27]. This is done with an object oriented approach. Every
implemented problem has its own class. The super-class of every problem is called GSIPProblem and
inherits itself from the class hgsetget. From this super class functionality is inherited to the problems
and the same structure of every problem is ensured. The description of this functionality is the main
topic of this chapter.

We describe in the first section how the collection is started and simple problems can be initialized.
We also describe the most important function evaluations which are needed to describe the problem. A
complete list is given in the appendix. We focus here on problems found in the literature. In Chapter 3
we will describe more ways of generating examples using a modular principle. In the second section we
describe how a new problem can be implemented which inherits again from the super class GSIPProblem
the described functionality. In the final section we describe more methods which are implemented for
the usage with this collection.

2.1. Getting Started: Initialize a problem

The first step, which has to be done every time before the collection can be used, is to load all needed
paths. Therefore one first navigates in the folder GSIPProblems and then the script: addpath

has to be executed.

We first only consider the initialization of problems directly given in the form of (1.3). All of these prob-
lems are listed in Appendix A.1. Later in chapter 3 we will describe more ways of generating examples.
This will be done by reformulating design centering problems to general semi-infinite ones.

As mentioned before the problems are implemented in MATLAB as classes. Thus one problem can be
initialized by using the constructor of this class. For example if we want to load Problem 1. We can
easily do this by:

p=Problem1 ()

The Variable p now contains one instance of Problem1. The methods of this problem give us all infor-
mation about the describing functions. For example we can compute the value of the objective function
for a given pont by:

p.evalObjFun([0,0])

Some problems need an additional parameter for the description. This parameter has to be added as an
input to the constructor. For example for Problem8:

p=Problem8(5)

If there is needed such an extra input, you can find it in the description of the problems in A.1.With:
help Probleml

A short description of Problem1 can be found.

The properties of the class GSIPProblem are protected. They can be read and modified by get and set
functions. Functions to evaluate bounds, linear constraints and non-linear constraints are implemented
separately. We give a full list of properties and methods for the class GSIPProblem in Appendix B.1.
The most important methods can be found in the following table. We use the notations introduced in
(1.3).



Function call

Inputs

Outputs

f=<problem>.evalObjFun(x)

Upper level variables (1 x m).

Objective function value (1 x 1).

g=<problem>.
evalSemiInfConstrs(i,x,y)

Index of semi-infinite constraint
(1 x 1), upper level variables

(1 x m), s points of infinite
index set (5 X n4;))-

Value of i-th semi-infinite
constraint gl (x,y) for s points
(s x1).

g=<problem>.
evalAllUppLevIneqConstrs(x)

Upper level variables (1 x m).

Values of nonlinear constraints:
gNL(x),i € INL | linear
inequalities: AVLx — bYL and
bounds: x — uY%, 1V —x
(I1xnumber of ordinary inequality
constraints). The bounds =+ inf
are dropped.

g=<problem>.
evalAllUppLevEqConstrs(x)

Upper level variables (1 x m).

Values of nonlinear equality
constraints: h}'*(x),j € JN* and
linear equalities: CVEx — dUr
(I1x number of equality
constraints).

v=<problem>.
evalAlllowLevConstrs(k,x,y)

Index of infinite Index-set

(1 x 1), Upper level variables
(1 x m), point of infinite index
set (1 X ny).

Values of nonlinear describing
functions vy ;(x,y) for all j, linear
describing functions:

AkLLy — bkLL and bounds:

x — we L, L"F — x (The bounds
+inf are dropped) of the k — th
index set (1xnumber of
describing functions).

y=<problem>.
evalTrafoFun(k,x,z)

Index of infinite Index-set

(1 x 1), Upper level variables
(1 x m), s points of infinite
index set Zj. (s X 7).

Transformed points y = tx(x, 2)
(s X ng).

z=<problem>.
evalInvTrafoFun(k,x,y)

Index of infinite Index-set

(1 x 1), Upper level variables
(1 x m), s points of infinite
index set Yi(x) (s X ng).

Points z such that tx(z,2) =y
(S X ’ﬁ,k).

2.2. Implementing a new example

In the collection there is not only the possibility to use an already implemented problem, one can
also implement a new one. This new problem can again be implemented as a subclass of the class
GSIPProblem. If done so, all functionality described in this chapter is available for the new problem. For
implementing a new problem one can proceed in the following way:

e In the first step a template has to be filled. In the folder

...GSIPProblems/ImplicitProblems is a

file implicitProblemTemplate. In there all functions are found. Some functions are not necessary
to implement. If they are not needed, they can be deleted. These functions are marked with a
small comment. To keep compatibility all functions have to take inputs and give outputs with the




size specified in table B.2 from the Appendix B.1. Note, for the implementation of a class method,
a further input obj for the object is needed. This input is not needed in the call of a function.
Thats why this input is not listed. Of course more functions which are needed can be implemented.
A list together with a description of all properties, which need to be specified for the new example,
is given in the Appendix B.1 in Table B.1.

e After the implementation of a new problem one can check whether all functions work, take the

right inputs and give the right outputs. This consistency check can be done by the function
checkProblem. The function needs an instance of the problem as an input. If your Problem has
the name MyProblem this can look as follows:
p=MyProblem
checkProblem(p,0,0)
With this consistency check, one can check if a problem works correctly and it is easier to detect
whether there is a mistake in the algorithm or in the problem. Moreover, one doesn’t necessarily
have to check if the functions have the right input and output sizes during runtime of an algorithm.
If the second input is 1, the derivatives are compared to numerical derivatives. If the third input
is 1 second derivatives are checked. Whenever a function doesn’t work correctly or a derivative is
not correct a warning with a small description is thrown.

2.3. Further Features

2.3.1. Plot problem (plotSols)

It is sometimes quite hard to see whether a algorithm gives a useful result or not. It’s often easier to
see this in a picture. Therefore we have implemented two plot routines. One is implemented only for
design-centering problems (see chapter 3). We focus here on the plot routine implemented for all GSIP
problems. We therefore need the following reformulation of the problem GSIP.

GSIP : xer)r(ngan f(x)

s.t. Yi(x) € Gp(x) for all k € K (2.1)

where
Gr(x) = {y e R™ | g?1(x,y) < 0 for all i with ¢(i) = k}

For a fixed x we can draw the sets Yj(x) and G (x). And display the semi-infinite constraints in this way.
We also allow it in the plot routines to mark sepecific points in different colours. This can be helpful
especially when working with discretization methods or when the solution of the lower level problem
should be marked. There are two functions which implement this routine in one and two dimensions.
We describe them in the following:

e name:<problemname>.plotContainmentCondition(index0fLowLev,x,1lb,ub,...
pointsl,colorl,points2,color?2,...)

e description: The first input index0fLowLev is a vector. The containment conditions (2.1) is drawn
for £ €index0fLowLev and fixed x. By 1b and ub the bounds of the plot have to be specified. If
1b is a single vector, these bounds are used for every k €index0fLowLev. If it is a matrix the k-th
row contains the bounds for the k-th index. If 1b is a cell, the k-th entry contains the bounds for
the k-th index in index0OfLowLev. The same holds for the upper bound ub. Special points can be
marked by pointsl,points2,.... If pointsi is a matrix every row represents one point which is
drawn for every indexset. If pointsi is a cell of matrices. Every entry represents points for one
k €index0fLowLev. The corresponding color of every point set is given in colorl,color2,.. ..
Any matlab color specifier is possible.

The second possibility is to call the function plotSols. If no other routine is implemented the function
looks as follows:
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e name:<problemname>.plotSols(x,pointsl,colorl,points2,color2,...)

o description: Calls the function plotContainmentCondition. The bounds are taken from the
description of the infinite index-set.

For design-centering problems this function calls another plot routine. See for a detailed description
Section 3.4.
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3. Design Centering and Multiple-Body
Desigh Centering Problems

A (multiple body) design-centering problem consists of maximizing the sum of volumes of parametrized
bodies Yy (xx), k = 1,...¢q. These bodies are called designs. The designs should be contained in a set C.
This set is called container. For every design we get the following condition.

Vi(x) CC ke K (3.1)
To reformulate them to semi-infinite constraints we assume that C' is given by functional constraints:
C={yeR"|g(y)<Oforalliel}.
We obtain the following constrains:

gi(y) <0 forally € Vy(xk),i€Tand k=1,...¢

Moreover, we want two designs Yy, (xx,) and Yy, (xk,) with k1 # ko not to overlap or to have some
minimal distance. There are different ways to ensure this condition. We assume for the separation
condition that the designs are convex. Under this assumption we can describe the separation with a
hyperplane:

)
nkl,szy < By ky — B for all y € Yy, (%), (3.2)

0
nkhszy > ﬂklka + 5 for all NS Ykz (X)v

where M, k, and By, r, describe the hyperplane and ¢ is the asked distance between two designs. Note,
if the designs are not convex, this condition is too strong. We assume that the normal vector is normed,
ie. :

< Mky k2> Mk ke >= 1,

where < -,- > denotes the scalar-product.

We thus have two different types of semi-infinite constraints. For every design we have the inclusion
constraints (3.1) and for each pair of designs the separation constraints (3.2). The upper level variables
x consist of the parameters xi of the designs and the separating hyperplanes (M, k., Bk ks)

We assume that the k-th design can be described as follows:

Yi(xxk) == {y € R" |vjr(xk,y) <0, j € Jy,
A (xi) -y < b (xw),

LA (i) <y < weE(xi)}

Moreover, we allow nonlinear and linear constraints on the parameters:
NL . _ INL

Gip (X)) 0,7 € I,

. NL

hj»k(XK) S Ov] € Jk )
UL UL
A" "x <by 7,
UL UL
Cx "xk=dk 7,

LUE < xp <UL
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By some abuse of notation we can denote by Yy (x) := Yi(xx) the k — th indexset of the general semi-
infinite problem. Every nonlinear constraint on xy gives a nonlinear constraint on x and a linear one
gives a linear one.

3.1. Details of the implementation

For the implementation it is important to set the indices of the constraints and the parameters x. We
decided to do this in the following way:

e Parameters x
We begin with the parameters of the designs. The first parameters are the parameters of the first
design x7, the next parameters are the parameters of the second design x5 and so on. The next
parameters are the normal vectors and the translation of the separating hyperplanes. We begin
with the normal vector and the translation value of the separation of the first and the second design
(M,2, B1,2), then follows the separation of the first to the third and so on. We continue with the
separation of the second design to the third and so forth.

e Semi-infinite constraints:
The first | JYZ| constraints are the containment constraints for the first design, the second |JVL| are
the containment constraints for the second design and so on. All together there are the number of
designs times |JYL| such containment constraints. After the containment constraints the separation
constraints follow. First the separation of the first design to the second design, to the third design
and so on. Then the separation of the second design to the third, to the fourth design and so on.
All together there are @ - 2 such separation constraints where k is the number of designs

e Further constraints on x:
We begin with the constraints on the parameters for the first Design, then the second Design and
so on. The structure is carried over. Nonlinear constraints on the parameters for the k-th design
give nonlinear constraints on the upper level variables x. Linear ones give linear constraints. After
the nonlinear equality constraints on the design parameters the nonlinear equality constraints on
the separation parameters. We add the constraints

< My ko> Mhy ko >= 1

in the same order as the parameters.

3.2. Initialize an implemented design-centering or multiple body
design-centering problem

There are different ways to initialize a design-centering problems. First there is in Appendix A.2 a list
of examples, that can be initialized as described in chapter 2. These are examples which were found in
the literature. For example:

p=DCProbleml

The variable p contains a GSIPProblem which corresponds to the first design centering problem given
in A.2.

But given the designs and the container the reformulation is generic. Thats why one can get a problem
also by defining the designs and the container. All implemented designs and containers are given in
Appendix A.2.1 and A.2.2. An arbitrary (multiple body) design-centering problem can be initialized in
three steps

e choose one or several designs:
Also designs are implemented as an individual class. They can be initialized by it’s constructor.
For example if we want to get the design DesignCircle we can do this by:
d=DesignCircle

13



Some of the designs need more information for example the dimension. Again we will remark this
in the description of the according design in A.2.1. For example we could get the same circle by:
d=DesignHyperBall(2)

e choose a container:
After we have chosen at least one design we have to choose a container as well. Again we get a
container by it’s constructor. For example if one wants to consider a Triangle:
c=ContainerTriangle
Again some containers are given more genarally. The information needed to construct the container
can be found in the description of the container.

e plug both together:
Now we have chosen the designs and the container. To get a design-centering problem with one
design and one containter one can use the constructor DCProblemAsGSIP The constructor needs a
design and a container and returns a GSIP, which has all the properties and methods described in
chapter 2. So let d be a design and ¢ be a container. We get the corresponding GSIP by:
p=DCProblemAsGSIP(d,c)
To get a multiple body design-centering problem we use the constructor MBProblemsAsGSIP. This
method needs a container c, at least 2 designs d1,d2,...,dk and a distance h that should be
between the designs. For 3 Designs this looks as follows:
p=MBProblemAsGSIP(c,h,d1,d2,d3)
This instance again has the same properties and methods described in section 2. Some examples
for the initialization of design-centering problems can be found in the implementation.

3.3. Implementing a new design or a new container

The implementation of a design and a container works nearly the same way as the implementation of a
general semi-infinite optimization problem. At first one can find templates in the folders
...ImplicitProblems/Designs or ...ImplicitProblems/Containers. They have the names
DesignTemplate and ContainerTemplate. In these templates one can find all the functions that are
necessarily needed and which can be deleted. All the functions one is going to implement must have
the same size of inputs and outputs described in Table B.4 or B.6 respectively (given in the Appendices
B.2 and B.3). Note that for every function (except for the constructor) one more input for the object is
needed.

The properties that are needed for the implementation of a own example are listed in the tables B.3 and
B.5 (given in the Appendices B.2 and B.3).

After the implementation of a new design or container you can again check whether all the functions
work and have the correct inputs and outputs. This consistency check can be done by the function
checkDesign or the function checkContainer. The function needs an instance of the object as an
input. If the design has the name myDesign this can look as follows:

d=myDesign

checkDesign(d,1,1)

Second input: derivatives are checked. Third input: second derivatives are checked. Analogous for the
container.

3.4. Plot a design-centering problem

For all designs and containers given in this collection we have implemented routines that can draw them
in two and three dimensions. The routines are given as follows:

e Name: <designname>.plotDesign(x)
Description: Plots the design in green for current parameter x.

e Name: <containername>.plotContainer
Description: Plots the container in blue.

14



With these auxiliary functions we can illustrate the design-centering problem for given parameters x. We
first plot the container in blue, then the designs in green and finally the separating hyperplanes in red.
This is done when the function plotSols(x) is called for a two dimensional design-centering problem.
In a three dimensional problem the same is done. Except for the hyperplanes They are not drawn in
three dimensions.

15



A. List of Examples

In the first Appendix we list all examples which are currently implemented in the collection. We be-
gin with Problems which are formulated as GSIP directly (native Examples). We then proceed with
Design-Centering problems which can be reformulated as GSIP. We list designs and containers sepa-
rately. Furthermore all formulations as GSIPs are given.

A.1. GSIP problems from literature (native ones)

In this chapter we list all problems we have found in the literature and which are not a design centering
or robust portfolio problem. The name of each problem is also the name in the implementation. Thus
also the name of the constructor. The first problem can be initialized by: Proleml

The usage of these problems was described in detail in chapter 2. We will now describe every problem
in detail. For some problems the index set can become empty. We have implemented constraints on the
parameters x that exclude this effect.

Problem 1
Taken from [10].

min Tl + X2

x€R?2

s.t. —y <0 for all y € Y(x),
-1 S T1 S 1a
-1 S T2 S ]-7

where
Y(x)={yeR with —y < —u,

—y< —12}
Transformation to a fixed index set:

t: R?x[0,00) — R

(x,2) +— t(x,z):{

1+ 2z 7if$12x23

otz L ifx <xo

Remarks: The lower level problem @Q(x) is linear. The optimal value function o(x)
is non-convex. The index set can be given explicitly by: Y(x) = [max{z,za},00].
Thus the feasible set is explicitly given by M = {z € [-1,1]> | max{z,z2} > 0}

The two optimal solutions are (0,—1) and (—1,0) and the optimal value is —1.
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Problem 2
Taken from [16].

min  f{(x)

st. y—x1 —x9 <0forall y € Y(x),

where
Y(x)={y e R with —2y <zy+3,

y<xz —2}

Transformation to a fixed index set:

t: R?x[0,1] — R
x.2) .2 2(-3 -y 4 (1—2)(z1 —2) ,if 221 +a2—12>0,
X,z) X,z) =
n. def. , otherwise

Remarks: The lower level problem @(x) is linear. The optimal value function ¢(x) is non-convex. The
index set Y (x) is empty for 2z; + 29 — 1 < 0, otherwise it is explicitly given by Y'(x) = [*3*“ , T, — 2}.
The feasible set is explicitly given by: M = {x € R? | 23 —2 < 0, 221 + 22 — 1 > 0} U {z € R? |
201+ a9 — 1< 0}.

The linear constraint 221 + x5 — 1 > 107° can be added in the implementation.
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Problem 3
Taken from [16].

2
min (xl + % — ﬁ) + (29 — 2.5)2

xcR2

st. y—x1 +a9 <0forall y € Y(x),
—5§.’E1§5,
—5§$2§5,

where
Y(x)={y € Rwith —2y <ax3+3,

y§$1_27
-5 <y<5}

Transformation to a fixed index set:

t: R?x[0,1] — R
(x.2) . ) (1—2)=22=3 4 2(x1 —2) ,if 201 + 25— 12>0,
x,2) = t(x,z)=
n. def. , otherwise

Remarks: The lower level problem Q(x) is linear. The optimal value function ¢(x) is convex. The
index set Y'(x) is empty for 2z, + 2 — 1 < 0, otherwise it is explicitly given by Y (x) = [=2;%2, 2y — 2].
Thus the feasible set is explicitly given by M = {z € [-5,5]? | 22 —2 < 0,221 + 22 — 1 > 0} U {z € R? |
2x1 + x2 — 1 < 0}

The linear constraint 2z; + z2 > 1 4+ 107% can be added in the implementation.

Problem 4
Taken from [13].

min x4
xcR4

st. 3(m — )%+ (2—y)x3 +5(22 +y) + 211 + 3x2 — 13 + e — gz, <0Oforallye Y (x),
where

Y(x) ={y € R with y < — Lsin(zq22) + 3,

0<y<l t

Transformation to a fixed index set:
t: R*x[0,1] — R
(x,2) — tx,2)=(1-2)- (% - %sin(mlzg))

Remarks: The problem is unbounded. The lower level problem @Q(x) 1is non-
convex. The index set can be given explicitly by Y(x) = [0,1 — {sin(zi2s)].
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Problem 5

min  z? + 22
x€R?

st. —(y1 —21)? = (y2 —22)? +1 <0 for all y € Y (x),

where
Y(x)={y € R? with —y; < — 1y,

—y2 <0 }

Transformation to a fixed index set:

t: R2x[0,00)> — R2?
T+ 2
(x,2) — t(x,z)= LA
22

Remarks: The lower level problem Q(x) is convex. The optimal value function ¢(x) is non-
convex. The index set can be given explicitly by Y(x) = [z1,00) x [0,00). It is unbounded. The
solution of the lower level problem is (z1,max(0,z2)). Thus the feasible set is explicitly given by
M={xreR*|1—23 <0,-1> zo}. The optimal solution is (0, —1) and the optimal value is 1.

Problem 6
Taken from [26].

min

z€R

st. —fT—z—y<O0forallyeY(z),
—1<x <1,

where
Y(Jf):{yERWIth —1—x2§y§1+x2}

Transformation to a fixed index set:

t: Rx[0,1]] — R
(2,2) = tx,2)=2-(—1—a?)+(1—2) (1+2?

Remarks: The lower level problem Q(z) is linear. The optimal value function ¢(z) = 75 —z+1+ 22
is convex. The index set is explicitly given by: Y(x) = [-1 — 2% 1 + 2?].  The so-
lution of the lower-level-problem is —1 — 2. The feasible set is explicitly given by:
M = {z € [-1,1] | =2 — 2 4+ 2 < 0} = [-05,1]. The optimal solution is —0.5.
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Problem 7
Taken from [7].

min xo
xER?2
st. —my—y3 <0 forall y € Y(x),

where

y<0}
Transformation to a fixed index set:
t: R?x[0,1] — R
2 {2z — 22 | if 229 — 23 <0,

n. def. , otherwise

(x,2) = t(x,2)=

Remarks: The lower level problem Q(x) is non-convex. The optimal value function p(x) = —3xq + 27
is convex. The index set is empty if 229 — 2% > 0 is explicitly given by Y (x) = [{/2z2 — 27,0]. Thus the
feasible set is explicitly given by: M = {x € R? | 225 — 2% < 0, —3z2+ 2% < 0}U{x € R? | 225 — 2% > 0}.
The optimal solution is (0,0) and the optimal value is 0.

The non-linear constraint 2zo — x% < —107% can be added in the implementation.

Problem 8
Taken from [6].

min an (3(m z+1)x2 21%)
xeR™

st. y+> i w7 —7<0forallyeY(x),
where

(x) ={yeRwith —100 <y< 3", 322 6}

=1 m™
Transformation to a fixed index set:
t: R™x[0,1] — R
(x,2) = t(x,z)=-100z+ (1 —2) (", 2a? —6)

=1 m™i

Remarks: The lower level problem )(x) is non-convex. The optimal value function ¢(x) is convex.

The index set is explicitly given by Y (x) = [—100,>/", 2222 — 6]. Thus the feasible set is explicitly
given by: M = {z e R™ | Y} 23022 13 < 0}.

This problem is given for a variable number of parameters x. To initialize
the problem the number of parameters has to be set, e.g. Problem8(10).
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Problem 9
Taken from [6].

. m 3(m—i+1) 2 )
min, X (Mgt -2

st Yo (@i —y)?—10m <0 for all y € Y (x),

where
Y(x)={yeRwith —y< —1,

y< Xl 41
Transformation to a fixed index set:
t: R™x[0,1] — R
(x,2) = tx,2)=—-2+(1-2)- (ZZI x? + 1)

Remarks: The lower level problem )(x) is non-convex. The optimal value function ¢(x) is convex.
The index set is explicitly given by: Y(x) = [-1,> /" ? 4+ 1].

This problem is given for a variable number of parameters x. To initialize
the problem the number of parameters has to be set, e.g. Problem9(10).
Problem 10

Taken from [4].

: 1\2 | .2

min (x1—7)° + 23

s.t. y+z2 <0 forall y € Y(x),
—lgl‘l Sla
—IS.TQSl,

where
Y(x)={y € R with y?—z; <0,

-1<y <1}
Transformation to a fixed index set:
t: R?x[0,1] — R
—z- o1+ (1—2)-x1 ,ifx; >0,

n. def. , otherwise

(x,2) — t(x,z)=

Remarks: The lower level problem )(x) is convex. The optimal value function ¢(x) is non-convex.
The index set Y'(x) is empty for x; < 0, otherwise it is explicitly given by Y (x) = [—/Z1, \/Z1]. Thus,
the feasible set is explicitly given by: M = {z € [-1,1]* | 1 < 0} U{z € [-1,1]* | &1 > 0, /71 < 22}
The optimal solution is (0,0) and the optimal value is 15.

In the implementation the linear constraint x; > 1076  can be added.
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Problem 11
Taken from [4].

min xo

xER?2

st. —y>+ a9 <0forall y € Y(x),
-1 S T S ]-7
-1 S 2 S 17

where
Y(x) = {y € R with 225 —y® —2? <0,

-1<y <0}
Transformation to a fixed index set:
t: R?x[0,1] — R
z-max({/2ze — 22, —1) ,if 229 — 23 <0,

n. def. , otherwise

(x,2) = t(x,2)=

Remarks: The lower level problem @(x) is non-convex. The optimal value function ¢(x)

is non-convex. The index set Y (x) is empty for 2w, — 2? > 0, otherwise it is explic-
itly given by: Y(x) = [max{{/2xy—2?,—1},0].Thus, the feasible set is explicitly given by:

M={xe[-1,11?|2? <22} U{z € [-1,1]? |22 = -1} U

{re[-1,11? | -1 <220 — 22 <O Axy — 23 <0}

The optimal solution is (0,0) and the optimal value is 0.

In the implementation the non linear constraint 2 - x5 — :cf < —107% can be added.
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Problem 12
Taken from [9].

){rgR% %m‘f+2x1x2 — 2%
st. Y +yi—mz+a2? -2y <0foralyeY(x),
0< 2 <1,
0<zy <1,
where
Y(x) = {y € R? with y? +y3 +vy3 — 21 <0,
0<y <1,
0<y, <1,
0<ys <1}

Transformation to a fixed index set:

t: R2x{ze0,1®|z}+22+25<1} — R?

(x,z) — t(x,z)=xz 2

Remarks: The lower level problem (x) is non-convex. The optimal value function ¢ is convex. The
index set is explicitly given by Y (z) = {y € [0,1]® | v} + y3 + y3 < x1}. Thus, the feasible set is

explicitly given by M = {z € [0,1]? | 22 < x5}. The optimal solution is_(l, 1) and the optimal value is 3.

Problem 13
Taken from [23].

min z2
z€R

s.t. x—y<O0forall yeY(x),
—1<x <1,
where
Y(z) = {y € R with (y+1)*>+ 22 <0,
-2 <y<2}
Remarks: The lower level problem Q(z) is convex. The optimal value function ¢(z) is non-

convex. The index set Y (x) is empty for z # 0, otherwise Y (z) = {1}. Thus, the feasible set is
given by: M = [-1,1]\{0}. The minimum is not reached, but the infimum is attained at x = 0.
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Problem 14
Taken from [8].

min —x;
x€R2
s.t. y2 <0 for all y € Y(x),
-9 S z S 57
-5 S Z2 S 53
where
Y(x) = {y € R? with 3 —y? — 25 <0,
— Z2y1 + Y2 < 21,
-2 S Y1 S 2)
—4<y, <4}
Remarks: The lower level problem Q%) is

non-convex.
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Problem 15
Taken from [9],Ex.5.1.

; 2 2
min 4z7 — x9 — 25

x€ER2

st.  xo—ys <0OforallyeY(x),
-3 S T S 27
-3 S Z2 S 23

where
Y(x) = {y € R?® with (y1 +12)*> —y3 <0,

n < 21,
y2 < 21,

—4 <y <4,

—4<y; <4,

0<ys <16}
Transformation to a fixed index set:
t: RZx[0,1® — R?
—4z1+ (1= 2z1)1

max(—4, —4 — y1)zo + (1 — 29)x1 yif oy > =2,
(x,z) — t(xz)= z3(y1 +y2)? + (1 — 23)16
n. def. , otherwise
Remarks: The lower level problem @(x) is convex. The optimal value function ¢(x) is

non-convex. The index set Y (x) is empty for x; < —2, otherwise it is explicitly given by
Y(X) = [_4,.’E1] X [maX{_47 —4 - yl}vxl] X [(yl +y2)2a 16]
In the implementation the linear constraint > —2 4+ 107% can be added.
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Problem 16
Taken from [28].

min —x;

x€ER2

s.t. 323 — 5 <0 for all y € Y(x),
0 S x1 S ]-7
0 S Z2 S 13

where
Y(x) = {y € R with —y® —42? —23 +1<0,

—2<y <0}
Transformation to a fixed index set:

t: R?x[0,1] — R

2o (—4a2 — a2+ 1)5 L if —42? —22+1<0,
(x,2) = t(x,2)=

n. def. , otherwise
Remarks: The lower level problem @(x) is non-convex. The optimal value function ¢(x)
is convex. The index set Y(x) is empty for —4x? — 22 + 1 > 0, otherwise it is explic-
itly given by Y(x) = [(—42? — 2% 4+ 1)5,0]. Thus, the feasible set is explicitly given by

M = {x € [0,1]* | 42} + 2} < 1} U{(3,0)}. The optimal solution is (3,0) and the optimal
value is —1.
2

In the implementation the non linear constraint —4x? — 23 + 1 < 107% can be added.
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Problem 17
Taken from [28].

s.t. —y-x9 <0 for all y € Y(x),
—-1<z <1,
1<z <1,

where
Y(x) ={y € R with z; —y? <0,

—1<y <1}
Transformation to a fixed index set:
t: R?x[0,1] — R
—z- 1+ (1—2)-/r1 ,ifx; >0,

n. def. , otherwise

(x,2) = t(x,2)=

Remarks: The lower level problem )(x) is non-convex. The optimal value function ¢(x) is convex.
The index set Y (x) is empty for 1 < 0, otherwise it is explicitly given by Y (x) = [—/T1, \/Z1].
In the implementation the linear constraint x; > 107% can be added.
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Problem 18
Taken from [5].

min 22

z€R
st. exp(z)-y? — 2%y <0forall y € Y(x),
—1<z <1,

where
_ : 1
Y(z) = {y € R with y2x3—x—5 <0,

0<y <1}
Transformation to a fixed index set:

t: Rx[0,1] — R

5 1 s 5. 1
zy /2L 0 < 22E <1

(z,2) = tz,2)=1(2 ,if 1< SzEl

n. def. , otherwise

Remarks: The lower level problem @Q(x) is non-convex. The optimal value function ¢(z) is non-convex.
The index set is explicitly given by:

[O 5:E+1] ,lfo S S5x+1 S 1

) B3 53
Y(x) = ¢ [0.1] jif 1< 524l
0 ,otherwise

Thus, the feasible set is explicitly given by M = {z € [-1,1] | 2251 < 0}.
In the implementation the linear constraint can be added.
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Problem 19
Taken from [5].

: 24 .2 1 2
)I(Ié]eré Ty + 5 + 23
s.t. o1+ zgexp(xsy) + exp(2y) — 2sin(4dy) < 0 for all y € Y (x),

-5 S &1 S 5,

-5 S x2 S 57

-5 S €3 S 57

where
Y(x) ={y € R with 2y <9 +1,
0<y<1}

Transformation to a fixed index set:

t: R3x[0,1] — R

(1—2) 22t if gy > —1,
(x,2) — t(x,z)=
n. def. , otherwise

Remarks: The lower level problem ((x) is non-convex. The index set Y(x) is empty for zo < —1,
otherwise it is explicitly given by Y (x) = [0, 2],
In the Implementation the linear constraint z, > —1 4+ 1079 can be added.

Problem 20
Taken from [5].

min 2?2

x€R

st. 2y3—a? <0forally € Y(x),
—1<xz <1,

where
Y(z) = {y € R with 2% —¢% <0,

0<y <1}
Transformation to a fixed index set:
t: Rx[0,1]] — R
(z,2) +— t(z,2)=(1—2)Va2+z

Remarks:  The lower level problem Q@Q(x) is non-convex. The index set is explic-
itly given by Y(z) = [Vz32,1]. Thus the feasible set is explicitly given by: M =

[—1,—%] U [?,1]. The optimal solutions are % and —? and the optimal value is 3.
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Problem 21
Taken from [5].

min exp(z1) + exp(x2) + exp(x3)

x€ER3

s.t. ﬁ—xl—xg~y—x3~y2SOforaller(x),
—-1<z <1,
—1<x <1,
—1<z3 <1,

where
Y(x)={y €R with — 1y < — x5 — a3,

0<y<l1 }
Transformation to a fixed index set:

t: R3x[0,1] — R

z-max{0,2(z2 + x3)} + (1 —2) ,ifzy+a3 < 3,
(x,2) — t(x,z)=

n. def. , otherwise
Remarks: The lower level problem Q(x) is non-convex. The optimal value function ¢(x)
is non-convex. The index set Y (x) is empty for zo + z3 > %, otherwise it is explicitly

given by: Y(x) = [max{0,2 - (x2 + z3)},1]. Thus, the feasible set is explicitly given by
M={x€[0,1P |22+ x5 >3} U{x€[0,1]® |22+ 23 < 0,21 = 1}
U{XE [0,1]3 | I2+l'3 Z O,m — 1 — T2 (:L‘2+1'3) — X3 (Il +IQ) S 0}

In the implementation the linear constraint xo + 23 < 1076 is added.

1
2
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Problem 22
Taken from [5].

; 2 2 2
mm - xy + x5 + x3

x€R

st zi(yr +v2+ 1) + 22(y1y2 — ¥3) + 23(vay2 + 5 +y2) +12 <0 for all y € Y (x),
—1<2 <0,
—1< 2y <0,
—1< 23 <0,

where
Y(x) = {y € R? with z? —y? <0,

0§y1 Sla
0<y, <1}

Transformation to a fixed index set:

t: R®x[0,1? — R2?

22
Remarks: The lower level problem @(x) is non-convex. The optimal value function
©(x) is non-convex. The index set is explicitly given by Y (x) = [0,\/z3] x [0,1].

Problem 23
Taken from [5].

min 2% — 4,
xER?

s.t. a1 cos(y) + zosin(y) —1 <0 for all y € Y(x),
0<z <2,
0<ax <2,
where
Y(x) = {y € R with —32 — Ty + 2 <0,
0<y <}

Transformation to a fixed index set:

t: RZx[0,1] — R

(x,2) = tx,z)=z2/(B-Tw)+(1-2)r

Remarks: The lower level problem @Q(x) is non-convex.
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Problem 24
Taken from [5].

min —4x, — 2(z T
x€ER6 ! 3( )
s.t. Yl + x5 y1y2 + Te - Yo

OSZL'l

r1+ X2 Y1 +T3- Y2+ x4 -

0<uxy
0<z3
0< x4y
0<uxs
0<uxg

where

<O0forall y € Y(x),
<2,
<2,
<2,
<2,
<2

<2,

Y(x) = {y € R? with z cos(y1) — z2sin(y;) <0,

1<y
1<y

Transformation to a fixed index set:

t: RSx[0,1> — R?
(1 —z1)arctan($t) + 21
—1+ 229 ’
(x,2) — t(x,z)= —1422
—1+ 2z ’
n. def. ,
Remarks: The lower level problem @Q(x) is non-convex.

non-convex. The index set Y(x) is empty for arctan %)

The optimal value function

<1,

<1}

ifarctan (;—;) <1,z9 #0,

if Tr1 = Ty = O,
otherwise

p(x) is

> 1,29 # 0 or zo = 0,27 # 0.
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A.2. Design-Centering Problems

One example of generalized semi-infinite problems are design-centering problems. The description of
these problems needs designs and a container. They give all the information needed to generate the
problem. How a design-centering can be formulated as a GSIP is shown in chapter 3. It is also described
how these problems can be initialized, given several designs d1, d2, ..., ds, a container ¢ and a desired
distance h the problem is initialized by:

p=MBProblemAsGSIP(c,h,d1,d2 ...,ds)

If only the first design should be indescribed the problem can be initialized by:
p=DCProblemAsGSIP(d1,c)

In this chapter of the appendix we list all implemented designs and containers. At the end we list the
design-centering problems which were considered in the literature.

A.2.1. Designs

For every design we give the describing function in dependence of the parameters x. We also give a
transformation in the sense of the one described in chapter 1. Finally we list possible constraints on
the parameters. If they are not fulfilled, the design degenerates. For every design the name is written
in Brackets. For every design the constructor is given as Design<name>. For example the circle is
initialized by:

d=DesignCircle

Design 1 (Circle)
The first two parameters describe the position and the third describes the radius.
D(x) = {y € R? with (y; —21)? + (y2 —22)> =23 <0}
Vol(x) = mx3
Transformation to a fixed set:
t: R3x (H,ﬂ % [0, 1]) - R?

X1 + 2ox3 coOS(z
(x,z) — t(x,z)= 1 2223 cos(21)
To + 223 Sin(Zl)

Constraints on the parameters:

1076 < 24
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Design 2 (SemiCircle)

The first two paramaters descirbe the position, the third the radius and the last two parameters describe
the normal vector of the halfspace.

D(X):{yeRz with (yl—xl)\/ﬁiﬁ+(y2_x2)\/ﬁ?§0
2+ Ty T

(1 —21)? + (Y2 —22)* —23 <0}

Transformation to a fixed set:

t: R>x([0,1] x[-%,3]) — R?
21 + z123 cos(V* (X) + m22)

xo + z1x3 sin(V*(x) + m22)

where ¥*(x) = 2arctan (—m)

Constraints on the parameters:

—z3—224+1<0

10-6 < a3
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Design 3 (Boat)

The first two parameters describe the postion, the third the radius of the two circles and the parameters
x4, x5 describe the rotation.

2 2
SR SRR | U A,
4 5 4 5
(1 —21)? + (2 —22)? —23 <0}

Vol(x) = (

w[x
|
o
N—
8

w

Transformation to a fixed set:

t: R5x([0,1]><[—1,1]) —~ R?

z1 + 2123 cos(V*(z) + 5 + 2 zo) £ 25 < 0
T2 + 21wz sin(9* () + § + Z2) ’ -
(x,z) = ixz)= 1+ T3 \/;i“ng + 2133 cos(V*(x) — & + 2L 2) y .
T * us s , 1L 2p >
To + 23 \/miiizg + z123 cos(V* (x) — % + 2§22)

where 9* (X) = 2arctan (\/1121%4%_:”5>

Constraints on the parameters:

—mi—x%—FlSO

1076 < 4
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Design 4 (EllipseWithRotMat)

The design is implemented for two and three dimensions. Thats why the constructor needs the dimension
as an input.The first two or three parameters are the position, the next parameters describe the length
of the semi axes and the last parameters are the rotation. This is the description of the two dimensional

design.

D(x) = {y € R? with (y — xpOS)T Rot(x)T A(x)Rot(x) (y — Xpos) — 1 < 0}

where:
T
T
Xpos = or Xpos = | X2
T
T3
1
L0 700
A= [ or 409 = | 0 % 0
2 5
0w 00 %
g
cos(xs) — sin(x
Rot(x) = [ €0 7))
sin(zs) cos(xs)
cos(z7) —sin(x7) 0 cos(zg) 0 — sin(xg) 1 0 0
Rot(x) = | sin(x7) cos(z7) 0] - 0 1 0 | 0 cos(zg) —sin(xg)
0 0 1 sin(xg) 0 cos(zs) 0 sin(zg) cos(zg)]

4
Vol(x) =m-x3x4 or Vol(x) = 3T T4T5To
Transformation to a fixed set:

t: RS°x B2 — R?

21 T3
(x,2) — t(x,2) = Xpos + Rot(x) -
22 T4
or
t: RxB3 — R?
z1 24

(x,2) — t(x,2) =Xpos + Rot(x) - | 29 - x5
23 ' L6
where B? and B? denote the two and three dimensional unit hyperballs.

Constraints on the parameters:
Every semi-axes has to be greater than 1076.
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Design 5 (NonRotEllipse)

The parameters x1, 29 give the position of the center of the ellipse. The other two parameters are the
lengths of the semi-axes.

D(x) = {y € R? with Wopl 4 eopl 1 <}

4
Vol(x) = mxgxy
Transformation to a fixed set:
t: R x ([0, 1] % [—w,w]) & R?
X1 + 22x3 cos(z
(x,2) — t(x,z)= 1 2223 cos(21)

To + 2924 8in(271)

Constraints on the parameters:

1076 < a4

1076 < 2y
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n-dimensional designs

All designs listed above are implemented for one dimension. The next four example are implmented for
an arbitrary dimension.

Design 6 (HyperBall)

Ball in n dimensions. The constructor needs the dimension as input. The first n parameters are the
position and the last parameter is the radius.

D(x)={y e R" with Y} (y; — 7;)? — xiH <0}

Vol(x) =V - (xpy1)"

where V ist the volume of the unit ball.
Transformation to a fixed set:

t: Rl x{zeR"|Y " 22<1} — R"

=11
z1

T2
(x,2) = txz)=| |+Tpq1-2

T

Constraints on the parameters:

]-0_6 S Tn+1
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Design 7 (HyperCuboid)

Cuboid in n dimensions. The constructor needs the dimension as input. The first n parameters are the
position of the lower edge. The next n parameters are the position of the upper edge.

z1 Tn+41
x2 Tn+42
D(x) = {y € R™ with 1 <y <
Tn Ton
Vol(x) = (Tnt1 — 1) - (Tng2 —T2) -+ (T2 — Tn)

Transformation to a fixed set:
t: R x[0,1]" — R»
1+ 21 (Tpg1 — 21)

To + 22 - (Tpgo — x2)
(x,2) — t(x,2z)

Tn + Zn * ($2n - In)

Constraints on the parameters:

10...0-10 ... 0 —10-6
01...00 =1... 0 —10-6
00...10 0 ...—1 —10-6
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Design 8 (HyperEllipse)

The constructor needs the dimension n as an input. The Parameters x; up to (st~ describe the
2

matrix A(x) (see below). The last n parameters describe the position in the space.

T
x(n+21>n+1 x(ntl)n_‘rl
D(x)={y e R" with |y — (AX)AX)T) "y — —-1<0}
x (n+21)n +n X ('n.+21)'n. +n
where
X i) N In
0 T+l .- Toan—1
Ax) =
0 . 0 L (n+1)n
2
Vol(x) =V - (21 - Tpg1 - Top -+ :17<n+21>n)
where V ist the volume of the unit ball.
Transformation to a fixed set:
t: R(n+2)n x B — R"
Z1 X (n+21)n+1
(X7 Z) = t(X, Z) = A(X) +
Zn T (G5 DL
where B™ denotes the n-dimensional unit hyper ball.
Constraints on parameters:

For a Parmeter z; on the diagonal of A(x) we have:
1073 <z
For a Parameter z; not on the diagonal of A(x) but in the matrix:
-1 S ZT; S 1
For two different elements z; and z; on the diagonal of A(x) we have:

The Design has two function getK() and setK(k). The default value for k is 5.
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Design 9 (NonRotHyperEllipse)

The design is a n-dimeinsional non rotatable ellipse. The constructor needs the dimension as an input.
The first n parameters are the postion of the centre. The next n-parameters are the lengths of the
semi-axes.

D(x) = {y e R" with >-", Wiz 1<}
n-+i

Vol(x) =V - T2 Tnti

where V is the volume of the n-dimensional unit Ball
Transformation to a fixed set:

t: R x xB" — R"

21 Tn41 z1
22 - Tp+2 T2
(x,2) — t(x,z)= _n +
Zn * T2n T
where B™ denotes the n-dimensional unit hyper ball.
Constraints on the parameters:
10_6 Tn+1
10~6 Tpn42
<
106 Ton
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A.2.2. Containers

The second ingredient for a design centering problem is the container. We list containers we have found
in the literature. For many purposes it is good to know some bounds on the container. We give for every
container such a bounding box.

Container 1 (C1)

C ={y € R? with —(y; +0.5)%> — (y2 +0.5)> +0.04 <0
—(y1 — 0.5)? — (y2 +0.5)2 4+ 0.04 <0

Y+ 12 <0

y1—y3—1<0

Yoy -1<0

2y —y3-1<0

—ly1| —y2 — 0.5 <0}

Be = [-1.5,1.5] x [~1,1]

Container 2 (Triangle)

C={yeR?with Ly; +94 -3 <0
-y —1<0
—y2 — 1 <0}

Be =[-1,7] x [-1,1]

Container 3 (C3)

C:{yERQWith (yl—%)2+y§—%§0
1—yf—y3<0
- —-3)P2—-y3<0

—y2 <0}

Be = [-1,2] x [0,1.5]

Container 4 (ConcTriangle)

C={yeR?with Ly; +9y. -3 <0
—y1—y3 <0
—y2 — 1 <0}

Be =[-1,7] x [-1,1]
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Container 5 (ConcTriangleWithGap)

C={yeR*with —(1 =2)* = (g2 +3)* + 75 <0
T ty—5<0

—Y1 — %SO

—y2 — 1 <0}

Be = [-1,7] x [-1,1]

Container 6 (C6 )

C={y eR2with (y, — )2 —ys—1<0
y: +y2 <0}

Be =[-0.5,1] x [-1,0]

Container 7 (C7)

C = {y € R? with 13—0 sin(myy) —y2 <0

yi+ 5y —1 <0}

Be =[-1,1] x [-0.5,2]
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n-dimensional container

Container 8 (Pyramid)
The constructor needs the dimension as input. The Pyramid is growing with the dimension to avoid to
rapid decrease of the volume.

C={yeR"with >7y, —n<0
—y; <0fori=1,...,n}

BC = [0, ’I’L]n

Container 9 (containerHyperCube)
In the implementation one can deside whether the first constraint should be considered or not.
The first input of the constructor is the dimension the second a boolean.

C={yeR"with y, — 3 - 33"y — 32 <0
—y; <0fori=1,...,n

—y;—1<0fori=1,...,n}

Bc = [Oa 1]77.

Container 10 (ParamHyperCube)

The first differences to the container Hyper cube is the choice of the edge length [ and the parameter p.
The parameter p gives the length of the distance of the lowest point of the parabola and the the lower
side. Also it is not possible to turn off the first constraint in the implementation.

The first input of the constructor is the dimension, the second [ and the third p.

C={yeR"with y, —4-(I—p)/l® (X5 (v — $)*) —p<0
—y; <Ofori=1,...,n
—y; —l<0fori=n+1,...,2n}

Be = [0,1]"
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A.2.3. Problems from Literature

DCProblem 1
Taken from [16].
Inscribing of Circle (Design 1) into C1 (Container 1).

: 2
st. —(y1 +0.5)2 — (2 +0.5)2 +0.04 <0 for all y € Y(x
—(y1 — 0.5)% — (y2 +0.5)24+0.04 <0 for all y € Y (x

—y2 +ys <Oforally € Y(x

(x)
(x)
(x)
y1 —ys—1<0foralyeY(x)
Y43 —1<0forally € Y(x)
—2y1 —y2 —1<0forally € Y(x)
—|yi| —y2 —0.5<0for ally € Y(x)
1076 < 23

where:
Y(x) ={y e R? with (y1 — 1)+ (y2 —22)* — 23 <0}

Transformation to a fixed index set:
t: R3x ([—mr] % [0, 1}) & R
X1 + 22x3 Ccos(z
(x,z) — t(x,z)= ! 23 c08(21)
Zo + zows sin(zy)
Remarks:
o Q1(x), Q2(x), Qua(x), @s5(x), Qs(x), Q7(x) :  convex
e (Q3(x):  non convex

® 3 convex

® V1,P2,P4,y ..., 07 ! non convex
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DCProblem 2
Taken from [1].
Inscribing of Circle (Design 1) into C3 (Container 3).
min 73
x€ER3
s.t. (yl—%)2+y§—%§0f0r ally € Y(x)
1—y}—y3<OforalyeY(x)
1-n—-3)2-y3<0forally €Y(x)
—y2 <0 forally € Y(x)
10-6 < a3

where:
Y(x) ={y € R* with (y1 —21)* + (g2 —22)* —23 <0 }

Transformation to a fixed index set:
t: R3x ([—mr] x [0, 1}) - R
X1 + 2223 cos(z1)

(x,z) — t(x,z)=
Zo + 2923 8in(21)

Remarks:
o Q1(x), Q2(x), Qs(x): convex
o (s: non convex
® V3,04t convex
® ¥1,p9 : non convex
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DCProblem 3
Taken from [22].
Inscribing of HyperEllipse (2 dimensionalDesign 8) into ConcTriangle (Container 4).

min V -xzj23
x€RO

s.t. iyl + yo — % <Oforally € Y(x)
—y; —y3 <0 forally€Y(x)
—y2—1<0forally € Y(x)

Ty, — 5.’1)2 S 0
—bx1 +x9 <0
1073 <z
-1 S T2 S 1
1073 < z3
where: V ist the volume of the unit ball,
T
T4 T4
Y(x) ={y € R? with [y — (AX)Ax)T) |y - —1<0}
Zs x5
and
X1 X9
Ax) =
0 I3

Transformation to a fixed index set:

t: R°xB? — R?
V4 X
(x,2) — txz)=Ax) [ |+ [
22 Ts

where B? denotes the unit circle.

Remarks:
® (1,2, Q3 :  convex
o : non convex

® o, Y3 convex
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DCProblem 4
Taken from [22].
Inscribing of Circle (Design 1) into ConcTriangle (Container 4).

mip
st. 2y 4y — 2 <0Oforally € Y(x)
—y; —y3 <0 forally€Y(x)
—y2—1<0forally € Y(x)
1076 < 25

where:
Y(x) ={y e R? with (y1 —x1)* + (y2 —22)* —23 <0}

Transformation to a fixed index set:
t: R3x ([_mr] % [0, 1}) — R2
x1 + zox3 cos(21)

(x,2) — t(x,2z)=
Zo + zowg sin(zy)

Remarks:
L] Ql; QQ, Qg : convex
e 1, non convex
® o, 03 : convex
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DCProblem 5
Taken from [22].
Inscribing of NonRotEllipse (Design 5) into ConcTriangle (Container 4).

min 73Ty
x€R4

st. 2y +ya— 2 <0Oforally € Y(x)
—y; —y3 <0 forally€Y(x)
—y2—1<0forally € Y(x)

107% < a3

1076 < x4

where:

Y(x) = {y € R? with Wimpl  @empl® 3 <}

4

Transformation to a fixed index set:

t: RYx ([o, 1] x [—w,ﬂ) & R
(x.2) = t(xz) = x1 + zox3 cos(z1)
, 7 Zg + zowy sin(zy)

Remarks:

e 01, Qo, Q3 : convex
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DCProblem 6
Taken from [22].
Inscribing of HyperCuboid (2 dimensional, Design 7) into ConcTriangle (Container 4).
min (25 — 1) (24 — 72)
st. 2y +ya— 2 <0Oforally € Y(x)
—y; —y3 <0 forally€Y(x)
—y2—1<0forally € Y(x)
1 —x3 < —1076

X9 — T4 S - 1076

where:
. T T3
Y(x) = {y € R? with <y< }
i) X4

Transformation to a fixed index set:
t: R*x[0,1> — R?
xr1+ 21 (1’3 71‘1)

(x,z) — t(x,z)=
Ty + 29 - (24 — X2)

Remarks:
e 1, Q2, Q3 : convex
o : non convex
® 0y, (03 : convex
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DCProblem 7
Taken from [14].
Inscribing of HyperCuboid (2 dimensional, Design 7) into ConcTriangleWithGap (Container 5).

)I(YEl]ié}J (z3 — 21)(T4 — 72)
st —(y1 —2)2 = (Y2 + 3)*+ 5 <Oforally € Y(x)
iy1 +y27%§0for ally e Y(x)
—y; —y3 <0foralye€Y(x)
—y2—1<0forall y € Y(x)
x, —x3 < — 1076

To—x4 < —1076

where:

Y(x) = {y € R? with

IN
<

IN
—

To X4
Transformation to a fixed index set:
t: R*x[0,12 — R?
xr1+ 21 - (1'3 —1'1)

X,Z t(x,z) =
(oz) = txs) To + 22 - (4 — x2)

Remarks:
o Ql; Qg, Q3 : convex
® o, o : convex
o V1,04 : non convex
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DCProblem 8
Taken from [14].

Inscribing of SemiCircle (Design 2) into ConcTriangle (Container 4).
s.t. iyl + Yo — % <Oforally € Y(x)
—y1 —y3 <0 forally € Y(x)
—y2 —1<0forall y € Y(x)
—r3—22+1<0
1076 < x4

where:

Y(x) = {y € R? with (y; — L - 7= <
(0 = {y € R? with (y1 —21) 73— + (2 — 72) 725 <0
(1 —21)* + (g2 —22)* —23 <0 }

Transformation to a fixed index set:

t: ROx([0,1]x[-1,3]) — R?

,19*
(x.2) o t(x.z)= 21 + 2125 cos(P*(x) + m22)

xo + 2123 sin(V*(x) + 729)

* _ —Z4 _
where ¥*(x) = 2arctan <m_x5>

Remarks:

e 1, Q2,Q3:  convex
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DCProblem 9
Taken from [14].
Inscribing of Boat (Design 3) into ConcTriangle (Container 4).
my (5-9)
s.t. iyl + Yo — % <Oforally € Y(x)
—y1 —y3 <0 forally € Y(x)
—y2 —1<0forall y € Y(x)
—r3—22+1<0
1076 < x4

where:

W
IN

0

2 2
Y(x) = {y € R? with (y1 - [xl + %]) + (yg - [xg + %]) -z
1TTs 4TT5

(y1 —21)? + (y2 —22)? —23 <0}
Transformation to a fixed index set:

t: R5x([0,1]><[—1,1]) — R2

Ty + ziwzsin(V*(x) + § + 2{22

(xl + z1w3 cos(V* () + § + 2;22))
( )

X

1+ 4
1 3 ]

T5

2
5

To + X +
2 3 /Tﬁ-*-ﬂfﬁ

(1) = tx) = + 2yzacos(9" () — 4 + F20)

2123 cos(V*(x) — AT + 2L 2)

* — — T4
where ¥*(x) = 2 arctan (m%)

Remarks:

® ()1, @2, Q3 :  convex
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DCProblem 10
Taken from [14].
Inscribing of NonRotEllipse (Design 5) into Triangle (Container 2).

min 73Ty
x€R4

st. 2y +ya— 2 <0Oforally € Y(x)
—y1—1<0forally € Y(x)
—y2—1<0forally € Y(x)

107% < a3
1076 < x4

where:

Y(x) = {y € R? with Wimpl  @empl® 3 <}

4

Transformation to a fixed index set:

t: RYx ([0, 1] x [—w,ﬂ) & R
(x.2) = t(xz) = x1 + zox3 cos(z1)
, 7 Zg + zowy sin(zy)

Remarks:

° Ql: QQ; Q3 : konvex
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DCProblem 11
Taken from [14].
Inscribing of NonRotEllipse (Design 5) into ConcTriangleWithGap (Container 5).

min 7wr3Ty
x€ER*

st —(y1 —2)2 = (y2+ 3)*+ 5 <Oforally € Y(x)
iy1 + Yo — % <Oforally € Y(x)
—y; —y3 <0foralye€Y(x)
—y2—1<0forall y € Y(x)
1076 < 23
1076 < 24

where:

Y(x) = {y € R? with =z’ 4 We—za)® _j <}

T3 T4

Transformation to a fixed index set:
t: Rix (0,1 x[-m7]) — R?

X1 + 20x3 COS(2
(x,2) — t(x,z)= ! 23 008(21)
Zo + 2oy sin(z1)

Remarks:

® (Q1, 2, Q3 :  convex
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DCProblem 12
Taken from [14].
Inscribing of HyperCuboid (2 dimensional, Design 7) into Triangle (Container 2).
min (25 — 1) (24 — 72)
st. 2y +ya— 2 <0Oforally € Y(x)
—y1—1<0forally € Y(x)
—y2—1<0forally € Y(x)
1 —x3 < —1076

X9 — T4 S - 1076

where:
. T T3
Y(x) = {y € R? with <y< }
To X4

Transformation to a fixed index set:
t: R*x[0,1> — R?
xr1+ 21 (1’3 71‘1)

(x,z) — t(x,z)=
Ty + 29 - (24 — X2)

Remarks:
e 1, Q2, Q3 : convex
e ©V1,...,p3 : convex
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B. List of Properties and Methods

In the Chapters 2-4 we only list the most important functions. They are enough to solve the problem.
For some algorithms it may be more interesting to distinguish between different types of constraints.
Also functions that return basic properties of the problems are helpful. We will list in this Appendix all
methods which are implemented for the classes: Problem, Design, Container and UcSet. Also for the
implementation it important to know the methodology of the functions. Moreover the properties and
their meaning is needed. Thats why we begin every section with the properties of the class and then list

the methods.

B.1. GSIP-Problem

Super class of all implemented problems. We give for every property a short description and then the

size.

name of property

description

size

nr0fUppLevVars

Saves the number of the upper level vars
m.

1x1

boundsOnUppLevVars

Matrix where the first row contains the
lower bounds and the second row con-
tains the upper bounds of the parame-
ters (also inf,-inf possible).

initValsOfUppLevVars

Saves initial values for a starting point
in a optimization algorithm.

nr0fNonlinIneqsUppLev

The number of non linear in-
equality  constraints  [IYF|  that
are given in the function
evalUppLevNonlinIneqConstrs.

1x1

nr0fNonlinEqsUppLev

The number  of non linear
equality  constraints  |JYL|  that
are given in the function
evalUppLevNonlinEqConstrs.

1x1

linIneqsOnUppLevVars

[A,b] where Az < b corresponds to
AULx < bYL, If no such constraint
is needed you can just give an empty
matrix [].

size(AYF,1) x (m+1)
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name of property

description

size

linEqsOnUppLevVars

[C,d] where Cx = d corresponds to
CULy = @Y. 1If no such constraint
is needed you can just give an empty
matrix [].

size(CYL,1) x (m+1)

nr0fSemiInfConstrs

Saves the number of semi-infinite con-
straints 757,

1x1

nr0fIndexset

Contains the number of different index
sets.

1x1

con2LowLev

A vector that containes in the i-th en-
try the index of the Indexset that cor-
responds to the i-th semi-infinite con-
straint.

1 x |I57]

nr0fLowLevVars

A vector that contains in the j-th entry
the number of lower level variables for
the j-th indexset ny.

1 X nr0fIndexset

nr0fLowLevNonlinConstrs

A vector that containes in the j-th entry
the number of constraints |Ji| of the j-
th indexset(only the number of non lin-
ear constraints).

1 X nrOfIndexset

Table B.1.: properties of a native GSIP.
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In the following we give a list of the functions implemented. If one of these functions is not implemented
for a new example, it is replaced by a standard function. In brackets the size of the inputs and outputs
is given. We begin with functions that belong to the upper level, then the lower level and finally a

transformation (see Chapter 1).

Function call

Inputs

Outputs

upper level

m=<problem>.getNrUppLevVars

number of upper level variables x
(Ix1)

x_0=<problem>.
getInitValsUppLevVars

possible initial values of the upper
level variables x (1 x m)

<problem>.
setInitValsUppLevVars(x_0)

sets the initial values of the
upper level variables x (1 x m)

f=<problem>.evalObjFun(x)

upper level variables (1 x m)

objective function value (1 x 1)

grad_f=<problem>.
grad0ObjFun(x)

upper level variables (1 x m)

gradient of the objective
function(m x 1)

n=<problem>.
getNrSemiInfConstrs

number of semi-infinite
constraints |I°7| (1 x 1)

g=<problem>.
evalSemiInfConstrs(i,x,y)

index of semi-infinite constraint
(1 x 1), upper level variables

(1 x m), s points of index set
corresponding to constraint

(s x n«b(i))

value of i-th semi-infinite
constraint g’ (x,y) for a variable
number of points in the lower
level. Every row in the output
corresponds to one point (s x 1)

n=<problem>.
getNrUppLevNonlinInegs

number of non linear and non
semi-infinte inequality constraints
in the upper level |[IVE| (1 x 1)

g=<problem>.
evalUppLevNonlinIneqConstrs (x)

upper level variables (1 x m)

value of non linear inequality
constraints on upper level
variables(|IVE| x 1)

n=<problem>.
getNrUppLevNonlinEqgs

number of non linear and non
semi-infinite inequality
constraints in the upper level
[JNE| (1 x 1)

h=<problem>.
evalUppLevNonlinEqConstrs (x)

upper level variables (1 x m)

value of nonlinear equality
constraints on upper level
variables hV L (x)(|JVE| x 1)

[A,b]=<problem>.
getLinIneqsOnUppLevVars

linear inequalities on upper level
variables Ax < b (size(AYL),
size(bV1)
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Function call

Inputs

Outputs

[C,d]=<problem>.
getLinEqsOnUppLevVars

linear equalities on upper level
variables Cx = d (size(CY¥),
size(dY1))

[1b,ub]l=<problem>.
getBoundsOnUppLevVars

lower bounds on upper level
variables (1 x m), upper bounds
(1 x m). If there is no bound on a
upper level variable the value
-inf or inf is returned

infinite index sets

n=<problem>.getNrIndexSets

number of index sets (1 x 1)

k=<problem>.
getIndexSet0fSemiInfConstr (i)

index of semi-infinite constraint
(I1x1)

index of infinite index set(1 x 1)

n=<problem>.getNrLowLevVars (k)

index of index set(1 x 1)

number of lower level variables ny
(Ix1)

y=<problem>.
getInitValsLowLevVars(k,x)

index of index set (1 x 1),
upper level variables (1 x m)

Initial value for the optimization
of the lower level problem (1 X ng)

n=<problem>
.getNrNonlinLowLevConstrs (k)

index of infinite index set
(Ix1)

number of nonlinear inequality
constraints on lower level
variables |J| (1 x 1)

v=<problem>.
evallLowLevNonlinConstrs(k,x,y)

index of infinite index set

(1 x 1), upper level variables
(1 x m), s points of index set
(s X ng)

value of the nonlinear describing
function of k-th index set for s
points (s X |Jx|)

[A,b]=<problem>.
getLinInegsOnLowLevVars (k,x)

index of infinite index set
(1 x 1), upper level variables
(1 xm)

linear inequalities for k-th index
set Ay < b (size(Ar " (x)),
size(bi """ (x)))

[1b,ub]l=<problem>.
getBoundsOnLowLevVars (k,x)

index of infinite index set
(1 x 1), upper level variables
(1 xm)

lower bounds (1 x nj and upper
bounds (1 x m) on the lower level
variables
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Function call

Inputs

Outputs

n=getNrAllLowLevConstrs (k)

index of infinite index set
(I1x1)

number of all constraints for k-th
index set (1 x 1).The bounds
+inf are dropped.

v=<problem>.
evalAlllowLevConstrs(k,x,y)

index of infinite index set

(1 x 1), upper level variables
(1 x m), s points of index set
(s X ng)

evaluates all describing functions
of the k-th index set (number
constraintsx1). The bounds =+ inf
are dropped.

transformation

y=<problem>.evalTrafoFun(k,x,z)

index of infinite index set

(1 x 1), upper level variables
(1 x m), s points of fixed index
set (s X ng)

transforms s points of the fixed
index set to the original infinite
index set.

z=<problem>.
evalInvTrafoFun(k,x,y)

index of infinite index set

(1 x 1), upper level variables
(1 x m), lower level variables
(S X ﬁk)

returns an inverse image of the
k—th transformation (s x 7y)

Table B.2.: List of the methods for class GSIPProblem
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B.2. Design

name of property description size
dim The dimension of the design n 1x1
nr0fDesignConstrs The number of the function that de- 1x1

scribe the design |J| (only the non-
linear ones)

nr0fParams The number of parameters that de- 1x1
scribe the design m

initValsParams Initial values for the parameters which 1x1
may used for an optimization algorithm

boundsOnParams Matrix where the first row are the lower 2Xm
bounds (YL and the second row are the
upper bounds uU’ of the parameters
(also inf,-inf possible)

linIneqParamConstrs [A,b] where Ax < b corresponds to | size(AYL,1) x (m +1)
AVULx < UL, If no such constraint
is needed you can just give an empty
matrix []

linEqParamConstrs [C,d] where Cx=d corresponds to | size(CYL,1) x (m+1)
CULx = dYF. 1If no such constraint
is needed you can just give an empty
matrix []

nr0fNonlinParamIneqConstrs | Contains the number of non-linear and 1x1
non semi-infinite inequality constraints
|[IVE| that ar given in the function
evalNonLinIneqConstrsOnParams

nr0fNonlinParamEqConstrs Contains the number of non-linear and 1x1
non semi-infinite equality constraints
|JUL| that ar given in the function
evalNonLinEqConstrsOnParams

Table B.3.: Properties of a design

We start with methods which are connected to the parameters. Then we come to the description of the
design and finally we give a transformation.
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Function call

Inputs

Outputs

design parameters

n=<design>.getNrParams

number of of parameters (1 x 1)

x0=<design>.getInitValsParams

initial values of parameters
(1 xm)

<design>.setInitValsParams (x)

initial values for parameters
(1 xm)

sets the initial values of the
parameters to x

n=<design>.
getNrNonlinIneqConstrsOnParams

number of non linear on
parameters |J| (1 x 1)

g=<design>.
evalNonlinIneqConstrsOnParams (x)

parameters(1l x m)

value of nonlinear constraints
(1] x 1)

n=<design>.
getNrNonlinEqConstrsOnParams

number of non linear equality
constraints |J| on parameters
(1x1)

h=<design>.
evalNonlinEqConstrsOnParams (x)

parameters (1 x m)

value of non linear inequality
constraints on parameter (|J| x 1)

[A,b]=<design>.
getLinIneqsOnParams

linear inequalitiesAx < b on
parameters (size(AYL),
size(bY1))

[C,d]=<design>.getLinEqsOnParams

linear equalities CVXx =d
(size(CYL), size(dV1))

[1b,ub]l=<design>.
getBoundsOnParams

lower bounds (1 x m) and upper
bounds (1 x m) on parameters. If
there is no bound on a variable
-inf or inf is returned
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Function call

Inputs

Outputs

Design describing functions:

v=<design>.vol(x)

Parameters (1 x m)

volume of design (1 x 1)

grad_v=<design>.gradVol (x)

Parameters( 1 x m)

gradient of volume function
(m x 1)

n=<design>.getDim

dimension of design (1 x 1)

y=<design>.getInteriorPoint (x)

Parameters (1 x m)

point in the interior of the
design(1 x n)

n=<design>.getNrNonLinDescrFuns

number of non linear describing
functions |JEE| (1 x 1)

u=<design>.
evalNonlinDescrFuns(x,y)

Parameters (1 x m),
point(1 x n)

value of nonlinear describing
functions (1 x |J])

[A,b]=<design>.getLinDescrFuns(x)

Parameters (1 x m)

linear inequalities on the design
Ay <b
(size(ATE(x)),size(bLL(x)))

[1b,ub]l=<design>.
getBoundingBox (x)

Parameters (1 x m)

lower and upper bounds on the
design (1 x n,1 x n)

transformation

y=<design>.evalTrafoFun(x,z)

Parameters (1 x m), s points
of fixed design (s x 1)

transforms the fixed points into
points of the design(s x n)

z=<design>.evalInvTrafoFun(x,y)

Parameters (1 x m), s points
of the design (s x n)

one inverse image of the
transformation (s X 1)

Table B.4.:

B.3. Container

List of the methods of a design

There are not very many properties and methods for the class container. This is due to the fact that the
container of a design-centering problem is not variable. Moreover we do not distinguish between different
type of constraints because they all become semi-infinite constraints.
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name of property | description size

dim The dimension of the container n 1x1

nr0fConstFuns The number of the functions that de-
scribe the container I°7 (yielding semi-
infinite constraints)

BoundingBox; A Box in which the container is in. | 2 x n
A Matrix where the first row give the
lower bounds and the seccond row gives
the upper bounds of the container.

Table B.5.: Properties of a container

Function call Inputs

Outputs

n=<container>. getDim -

dimension of container (1 x 1)

n=<container>. getNrDescrFuns -

number of describing functions
(I1x1)

g=<container>. index of describing function
evalDescrFuns(i,y) (1 x 1), s points (s x n)

value of i-th describing function
for s points (s x 1)

[1b,ub]=<container>. -
getBoundingBox ()

bounding box B¢ given by
[1b, ub], in which the container is
contained (1 x n,1 x n)

Table B.6.: List of methods of container
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