
General Workfl ow Engine

Auto-Parallelization Engine

Domain Specifi c PartProvided by the User Generic Part

GPI-Space Framework

Domain Specifi c Parallel Programming System

Processing 
Modules in 
any Language

Visualization
Components

Legacy 
Binaries

Parallel I/O

Workfl ows

Fault Tolerance

Parallelization
Patterns

Data 
Management

Virtual Memory Layer

Failure Tolerant 
Distributed Run-Time 

System

321

MEMORY DRIVEN COMPUTING:
GPI-SPACE

1  GPI-Space architecture

2  Parallel reduction with-

out initial value as Petri net

3  GPI-Space runtime sys-

tem monitor

Fraunhofer-Institut für Techno- und

Wirtschaftsmathematik ITWM

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

Contact

Dr. Franz-Josef Pfreundt

Phone +49 631 31600-44 59

pfreundt@itwm.fraunhofer.de

Dr. Mirko Rahn

Phone +49 631 31600-45 53

mirko.rahn@itwm.fraunhofer.de

www.itwm.fraunhofer.de

F R A U N H O F E R  I N S T I T U T E  F O R  I N D U S T R I A L  M A T H E M A T I C S  I T W M

Separation of concerns

To separate computation and coordination 

is the core idea of not only a variety of to-

day’s task based systems but goes back in 

time at least into the 1980ies when David 

Gelernter designed Linda. A single model 

subsumes different levels of parallelism and 

is orthogonal to concrete hardware confi g-

urations and to specifi c programming lan-

guages used to implement compute ker-

nels. That orthogonality allows for inde-

pendent optimization and for generic 

approaches to large scale execution in a 

dynamic and heterogeneous environment.

Petri net: Managed dependencies

Coordination means to describe dependen-

cies between tasks. Petri nets are a well-

known and well-understood formalism to 

describe concurrent systems and are used 

in GPI-Space as workfl ow description lan-

guage. Data decomposition is naturally 

supported by Petri nets too. The workfl ow 

engine automatically parallelizes by main-

taining a so called “front of activity” which 

contains all tasks that are ready to be exe-

cuted at a given time.

Large Scale execution

The distributed runtime system of GPI-

Space is fed by the workfl ow engine with 

“activities”. Those are tasks bundled with 

their input data description. Taking into ac-

count the currently available resources and 

their capabilities the GPI-Space backfi lling 

bunch scheduler dynamically assigns work 

to resources such that time to solution is 

minimized. In case resources fail or become 

unavailable the runtime system reassigns 

work to other resources without requiring 

any further application support.

© Fraunhofer ITWM 2018
hpc_fl yer_GPI-Space_Memory driven computing_EN



1 2 31

Global Address Space

Compiler

Data Model Petri Net

Data Flow

Hardware
Topology

Supported
Hardware

Performance
Model

DNN Graph
(Import from Caffe,

TensorFlow via ONNX)

Runtime System
Workflow Engine

Scheduler

...

1  GPI-Space as core in the 

BMBF project HP-DLF

2  Integrated domain spe-

cifi c graphical development 

and processing

3  Visualization of partial 

results using XTreemView

Memory driven computing

Petri nets are powerful tools to describe 

data and task parallelism and to separate 

activation from execution. To make large 

amounts of data easily accessible for the 

activated executions GPI-Space has intro-

duced an application independent memory 

layer (IML). This is a separate process with 

a dedicated API to manage memory and to 

provide information on data transport costs. 

Data transfer within a distributed system is 

managed with help of the IML. In the result 

all tasks are started with pointers to the in-

put data in local memory but need not to 

worry about data transport at all. Instead 

data transfers are scheduled and executed 

asynchronously by the runtime system. At 

the same time the concrete physical data 

representation is hidden from the applica-

tion. The IML can be placed in “memory 

segments”, which are distributed in DRAM, 

HBM, NVRAM or even the BeeGFS parallel 

fi le system.

Coupled distinct applications

This memory driven computing approach 

using the IML has the advantage that appli-

cations can easily share data. Applications 

written in different languages or running 

on different architectures can be coupled 

via the IML. Moreover, individual tasks can 

be legacy code and are not required to be 

aware of the coupling. That means that 

tasks can correspond to threads in a parallel 

C++ program or be Matlab modules or 

even processes that belong to a large scale 

visualization program.

Domain specialization 

GPI-Space is a general purpose system and 

is typically not used “bare bone” but as 

core of a further specialized domain specif-

ic framework. GPI-Space supports special-

ization on all levels. The Petri net workfl ow 

description is hierarchical and provides an 

embedded type system for user defi ned 

types and an embedded expression lan-

guage that is integrated with the type sys-

tem. To specialize GPI-Space for a domain 

means to describe the data structures and 

workfl ow patterns once and to reuse it ei-

ther from a library or in a domain specifi c 

higher level language or compiler.

Example: Industrial Seismic Imaging

Seismic imaging is a demanding fi eld and a 

genuine big data application. Data sizes in 

the order of dozens of Terabytes meet plen-

ty of complex processing steps and optimi-

zation workfl ows. Strict quality measures 

meet short turnaround cycles and the con-

stant request for real time analysis. Built on 

internal domain expertise and in close co-

operation with industrial partners GPI-

Space is used with great success as core 

technology in industrial Seismic Imaging 

providing scalable and robust infrastructure 

in highly dynamic environments and for 

very long running applications.

Example: Deep Learning

High performance computing technology 

such as fault tolerance or asynchronous 

data transfer has proven to be benefi cial in 

deep learning scenarios too. The project 

HP-DLF uses GPI-Space as core technology. 

The goal of the project is to provide an ab-

stract, scalable and robust compute infra-

structure to domain scientist from the arti-

fi cial intelligence community. Compiler ex-

perts will produce a python embedded 

interface on top of GPI-Space that will al-

low domain scientists to make effi cient use 

of large heterogeneous machines. GPI-

Space provides fault tolerance, scalability 

and distributed memory and its scheduler 

will be enriched with support for accurate 

performance models.

Example: Particle visualization

In cooperation with the Leibniz Computing 

Centre and the University observatory Mu-

nich GPI-Space is used as integration plat-

form for the particle visualization tool 

SPLOTCH. Within 3 work weeks the end to 

end throughput of SPLOTCH was boosted 

by a factor of 10x. Crucial is the automatic 

advanced scheduling and communication 

hiding provided by GPI-Space.


